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A B S T R A C T

Innovation is one of the most important drivers of economic development. Even in developing countries,
households have access to a wide array of new technologies. However, factors affecting households’ tech-
nology adoption decisions remain poorly understood. Using data on solar microgrid adoption from rural
India, we investigate the determinants of household technology adoption. We offer all households identical
solar products to avoid bias from product differentiation. Households pay a monthly fee for technology use,
allowing us to abstract away from credit constraints as a barrier to adoption. The results show that house-
hold expenditures and savings as well as the household head’s entrepreneurial attitude are strong predictors
of adoption. In contrast, past fuel expenditures, risk acceptance, and community trust are not associated
with technology adoption decisions. These findings suggest new directions for research on the microeco-
nomics of household technology adoption, which is critical for sustainable development among the poor in
developing countries.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

How do households decide on the adoption of new technology?
Innovation is one of the most important forces of development
(Solow, 1956), and even very poor households now have access to a
wide array of new technologies in local markets. However, it is far
from clear what makes some households adopt a given technology,
but not others. Even when improved household technologies do not
directly enhance productivity, they may contribute to higher labor
market participation, improved health outcomes and educational
attainment (Dinkelman, 2011; World Bank, 2008; Samad et al., 2013).
To understand the economics of household technology adoption,
we focus on the case of improved household lighting through solar
power. Households that do have an electricity connection often have
limited hours of access because of poor quality of supply (Aklin et al.,
2016). In the absence of grid electricity, households in developing
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countries often rely on unhealthy and costly alternatives such as
kerosene (Lam et al., 2012). When a household decides on adopt-
ing new lighting technology, it must compare the costs of the new
technology to the benefits from fuel savings and improved lighting
quality.

We present a decision-theoretic model that offers an analytical
framework to explain household adoption, and generates testable
hypotheses. We test these hypotheses against technology adoption
data from an impact evaluation study of solar microgrids in rural
Uttar Pradesh, India (Aklin et al., 2017). In a random sample of 49
unelectrified habitations (Indian equivalent for hamlets), households
were provided an opportunity to subscribe to a solar microgrid ser-
vice for lighting and mobile charging in exchange for a monthly fee
of 100 rupees (∼US$ 1.5).1 Importantly, the technology offered to
rural villagers was identical for everyone and the fee-based business
model of the technology provider means that we can rule out credit

1 Exchange rate of 0.0147 US$ per Indian rupee, as of 20 January 2016.

https://doi.org/10.1016/j.eneco.2018.02.011
0140-9883/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.eneco.2018.02.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/eneco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2018.02.011&domain=pdf
mailto:aklin@pitt.edu
mailto:patrick.bayer@glasgow.ac.uk
mailto:spharish@wm.edu
mailto:JohannesU@jhu.edu
https://doi.org/10.1016/j.eneco.2018.02.011


36 M. Aklin et al. / Energy Economics 72 (2018) 35–46

constraints as an explanation for non-adoption by households.2 Over
a 15-month period, we surveyed the same households over three
waves with the solar microgrids being offered to the households
between the first (baseline) and the second (midline) waves. We also
conducted a separate service perception survey before the midline.

The results shed new light on the microeconomics of household
technology adoption. To begin with, and confirming earlier findings
on solar technology adoption (e.g., Rebane and Barham, 2011;
Smith and Urpelainen, 2014) affordability through high household
income and savings plays an important role in household technology
adoption. The results also speak to the role of psychological factors:
While risk acceptance is not associated with solar technology
adoption in the sample, household heads that score high on an
entrepreneurial spirit scale are likely to adopt such household
technology. Lastly, our analysis shows that people’s adoption deci-
sions are neither associated with their trust in companies and
business nor with their trust in other people living in their habitation.
Our results are closely related to several key studies in the literature
on the economics of technology adoption. Compared to technologies
for productive use (Giné and Yang, 2009; Duflo et al., 2011) and
learning models (Foster and Rosenzweig, 1995; Bandiera and Rasul,
2006; Conley and Udry, 2010), we focus on household adoption. Given
the massive health impacts of indoor air pollution due to kerosene
use, the benefits of well-being from efficient cooking and lighting
technologies are huge. In addition, and in line with recent works (Suri,
2011; Duflo et al., 2008, 2011), our study demonstrates that when
potential adopters have a good understanding of the technology to be
adopted, informational barriers are minimal. Instead what matters
are the benefits that the technology can offer.

2. Background information

Before presenting the theory, hypotheses, and research design,
we briefly describe the fee-based business model that we studied and
describe our sample.

2.1. Technology and business model

The solar power technology under study here is provided by Mera
Gao Power (MGP), an Indian company that installs and maintains
small solar microgrids in rural Uttar Pradesh. In the firm’s business
model, individual households can subscribe to an electricity access
scheme for a monthly fee of 100 rupees (∼US$ 1.5).3 In exchange, the
households receive two bright LED lights and a mobile charger. In
this model, MGP generates solar electricity during the day to charge
a central battery and then powers the lights and the mobile charger
at night, usually from 6 pm until 10 or 11 pm (these hours are con-
trolled by MGP, not individual households), though hours of access
are shorter during times of limited insolation, such as the peak of the
monsoon and the fog that appears in December/January.

Households within a 100-m radius of the location of the sys-
tem (solar panel and batteries) can subscribe to the service. The
household connections are designed such that only the lights and
the mobile charger can be powered: if households attempt to add
other devices, the device disconnects from the central battery. Thus,
detecting abuse and non-cooperative behavior by households is rela-
tively easy for MGP staff. An important complication concerns MGP’s
requirement that at least ten households per habitation need to
subscribe to their service before installation is economically feasible.
This implies that a single household’s willingness to adopt solar

2 Indeed, average monthly household expenditure in our baseline survey was
4339 rupees, so that the service fee amounts to just about 2% of monthly household
spending.

3 Exchange rate of 0.0147 US$ per Indian rupee, as of 20 January 2016.

power may be insufficient for installation of the microgrid if there is
no critical mass of other households who are also interested in the
service.4

2.2. Study sample and patterns of technology adoption

In India, the 2011 census found that two-thirds of the people
(i.e., 400 million individuals) lived in non-electrified households
(Government of India, 2011). Among non-electrified households, the
most common primary lighting source was kerosene oil, as 31% of
all households (over 90% of non-electrified households) reported
using it as their primary lighting source. Documenting large variation
across Indian states, the situation in rural Uttar Pradesh, where our
data were collected, is much worse. Only 24% of households have an
electricity connection and three out of four households use kerosene
for lighting according to the 2011 census. Barabanki district, where
most of our study habitations are, has an even lower rural household
electrification rate of 14%, as per the same 2011 census.

Our sampling strategy is described in Appendix A1 and basic
information on the habitations surveyed is shown in Appendix A3
(Table A6). We conducted a baseline survey (February 2014) before
administering treatment (February–July 2017) and followed up with
a midline (October 2014) and an endline survey (June 2015) for all
households. In August 2014, we conducted a brief summer survey
with only those households who had already subscribed to the
MGP service at the time. Before MGP offered their solar microgrid
to rural villagers in our sample, only 27 out of 778 households
in our baseline had access to grid electricity. With only access to
electricity for a median number of 8 h and about five power outages
during the last 30 days, reliability is poor even among those few
with electricity. Household lighting came almost exclusively from
kerosene use (96%), with only 4% of households reporting battery use
to power household lights. The availability of lighting is limited to
about 5 h of artificial lighting a day. Quality is also poor, as 80% of
households in our baseline survey reported to be either “unsatisfied”
or “very unsatisfied” with the quality of lighting.

By the midline survey, 132 households, accounting for about 17%
of our sample, had registered for the MGP service. These numbers
decreased to 92 adopters at the time of our endline survey, most
likely due to problems for solar microgrids to generate sufficient
power during the monsoon and fog seasons in Uttar Pradesh. All
adopting households came from 25 out of 49 treatment habitations.5

Lighting is not only important for every household, but weekly
household expenditures on lighting (29.2 rupees) were more than
3.5 times higher than the money spent on charging mobile phones
(7.6 rupees) in our baseline survey. In our summer survey, which was
conducted soon after installations, only two out of 136 interviewed
households report that better mobile charging was the main reason
for subscribing to MGP’s service, compared to 134 others emphasiz-
ing better lighting. Households apparently consider better lighting as
the more important benefit that MGP delivers.

We also have a good understanding of typical household uses
of lighting. Table 1 below summarizes key activities, separately for
social/non-economic uses and economic uses, which are primar-
ily intended to generate revenue from selling goods or services
in markets. Although not too surprising with only 65 households
being business owners in our sample (8.4%), social and non-business

4 While this does not affect the veracity of our model, our empirical estimation
strategy accounts for this complication in two ways. For one, we cluster standard
errors in all our models at the habitation level, which is the relevant geographic unit
for microgrid installation. Second, we estimate our main models not only for the full
sample, but also for the subsample of only those habitations in which MGP microgrids
were installed.

5 Across survey waves, only 8 households report that they would have liked to
adopt, but could not because of insufficient support by other villagers in the habitation.
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Table 1
The table shows reported use of lighting for social and economic activities from our baseline survey (February 2014) before treatment was administered.

Social and economic use of lighting from baseline survey (February 2014)

Social/ non-economic activities Economic activities

# Activity HHs (#) HHs (%) # Activity HHs (#) HHs (%)

1 Cooking 777/778 99.9% 1 Home business 46/778 5.9%
2 Meeting family 766/778 98.5% 2 Baking for sale 42/778 5.4%
3 Going out at night 719/778 92.4% 3 Sale of manufactured goods 30/778 3.9%
4 Meeting friends 621/778 79.8% 4 Repair services 10/778 1.3%
5 Children studying 469/606 77.4% 5 Handicraft 3/778 0.4%
6 Handle livestock 575/778 73.9% 6 Textile decoration 1/778 0.1%
7 Studying 484/778 62.2%
8 Reading 382/778 49.1%

Table 2
The table shows reported lighting use among MGP adopters from a summer survey
(August 2014) that was conducted to assess customer experience and satisfaction with
the MGP service right after the intervention was completed.

Lighting uses from summer survey (August 2014)

# Activity HHs (#) HHs (%)

1 Outside use 96/136 70.6%
2 Cooking 26/136 19.1%
3 Children studying 10/136 7.3%
4 Reading 4/136 2.9%

related uses seem to be of much greater importance. By far the most
important activities that lighting is used for are cooking (99.9%),
meeting with family (98.5%), and going out at night (92.4%).

The latter aspect is particularly interesting, as almost 60% of
households who had adopted MGP service reported in the endline
interview that outdoor lighting improved, with the accompany-
ing effects of almost a quarter of households saying they spend
more time outside at night, more community events are held in
the evenings, and almost three out of four households mentioned
increased safety at night. This matches findings from a short summer
survey which we administered after installation of the microgrids.
Table 2 summarizes the results: Here, out of 136 households which
had adopted MGP’s service by the time of the summer survey, 96
households (70.6%) report that the primary use of the solar lamps is
for outside use, followed by cooking (19%), children studying (7.4%)
and reading (2.9%).

As emphasized above, microgrid use is not capital-intensive for
households, as MGP does not require households to invest in tech-
nology itself. However, the monthly service fee that takes away from
disposable income for other consumptive uses is by no means a triv-
ial charge, especially outside the harvest season. While it admittedly
only accounts for little more than 2% of household’s monthly aver-
age expenditures, households in our baseline survey report to spend
about 120 rupees for lighting fuels. Drawing on additional informa-
tion from our survey data, the primary reason for more than half of
the households not to adopt the MGP service is cost. Table 3 shows
that the service fee is much more an impediment for adoption than,
for example, concerns related to MGP as service provider, alternative
solar or battery lighting options, or various other reasons.6 Therefore,
experimenting with adopting the new technology is by no means
costless, but involves a trade-off for each household. Solar lighting is
furthermore not a perfect substitute for kerosene, which is also used
for cooking and highly subsidized through the public distribution
system, biasing against new technology adoption.

6 In particular, we do not find any evidence in our survey data that households are
biased against adoption because they do not perceive MGP as a caste-neutral provider.

In our data, we see about one-third of subscribing households
stopping subscription between the midline and the endline, while
‘loyal’ customers remain satisfied with the service. Table 4 supports
this interpretation as the primary reasons for discontinuing MGP ser-
vice resulted from conflicts with MGP (65%), e.g., over billing, or the
quality of lighting (27%). On the one hand, the single most important
reason for discontinuation was dissatisfaction with the way MGP
conducted the business and interacted with the customers. On the
other hand, every fourth customer also complained about lighting
quality. Here we note that the foggy season, during which sunlight
is reduced to a minimum in December and January, fell between our
midline and endline surveys. The reduced availability of electricity
at that time could explain why the subscriptions fell between these
two survey waves.

3. Methodology and research design

In this section, we first present a model of household technology
adoption in order to motivate and formally derive the hypotheses
we test against adoption data from our field experiment. The sec-
ond part then presents the research design, the econometric model
specification, and measurement of key variables.

3.1. Model of household technology adoption

Our model focuses on technology adoption of an individual
household. Specifically, we consider the adoption decision of a solar
microgrid as a means to power household lighting from a renew-
able energy source. The baseline model characterizes a household’s
energy demand when only kerosene is available as a lighting fuel.
In the literature on household energy, the household can thus be
thought of as reaching the first step of the “energy ladder” (Masera
et al., 2000; Cheng and Urpelainen, 2014). In a second step, we
then compare this baseline demand to a case when solar micro-
grids are added to the household’s choice set as a renewable energy
alternative. Finally, we extend the model further to account for

Table 3
The table shows main reasons reported by households for not having adopted MGP
service. Responses come from both the midline (October 2014) and endline surveys
(June 2015). Questions were open-ended and we then classified responses by general
theme.

Reasons for MGP non-adoption from midline (October 2014) and endline
surveys (June 2015)

# Reason N Share

1 Cost 228 54%
2 Problem with MGP 101 24%
3 Other electricity/lighting option 62 15%
4 Other reason 28 7%

Total 419 100%
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Table 4
The table shows the main reasons given by households for discontinuing the MGP
service. Responses come from both the midline (October 2014) and endline surveys
(June 2015). Questions were open-ended and we then classified responses by general
theme.

Reasons for discontinuation of MGP service from midline (October 2014) and
endline surveys (June 2015)

# Reason N Share

1 Conflict with MGP 32 65%
2 Quality 13 27%
3 Cost 2 4%
4 Conflict with neighbors 1 2%
5 Other 1 2%

Total 49 100%

the importance of community trust in the adoption of network
resources, such as community solar microgrids. Comparative stat-
ics are derived from equilibrium energy consumption for household
lighting.

3.1.1. Baseline model of kerosene consumption
Following the literature on solar technology adoption (e.g.,

Komatsu et al., 2011; Smith and Urpelainen, 2014), the household
chooses optimal consumption levels of kerosene k as an energy
source and a numeraire good n. Market prices for these goods are
denoted pk and pn, respectively, and the household is assumed to be
a price taker. As usual, only relative prices matter, so we normalize
the numeraire price to pn = 1.

Given our interest in household lighting technology adoption, a
household is not interested in kerosene consumption per se, but in
the lighting output that kerosene use generates. We model lighting
output l as

l(k) = af (k), (1)

where a > 0 is an efficiency parameter of lighting production and
f is an increasing, strictly concave, and smooth function. Household
lighting output has decreasing returns to scale.

Further, let the household’s objective function U be given as

U =
∑
i∈I

Bi(l; h) −
∑
j∈J

Hj(k; h) + n. (2)

Lighting benefits are captured by Bi, which are increasing, strictly
concave, and well-behaved functions over the set of benefits I. Since
artificial lighting at night is a critical input for productive household
activities in many developing countries’ rural communities, profits
from these activities are an explicit element of the sub-utilities Bi;
when a household runs a business, we could have Bi′ = P(l; • ) with
i′ ∈ I, where P denotes household profits.

Functions Hj are also increasing and well-behaved, but strictly
convex in k, as they capture the negative effects from kerosene
use, like indoor air pollution. Vector h denotes a set of household
characteristics, for instance, household size, and all functions Bi and
Hj are increasing in every single element of h. Benefits from lighting
are (local) public goods for household members, while damages from
kerosene use are household public bads, so that this simplifying
assumption is plausible.

Given a household’s budget constraint pkk + n = X, optimal
kerosene and numeraire consumption levels k∗ and n∗ are implicitly

characterized in equilibrium by the following two first-order
conditions:7

∑
i∈I

∂Bi(l; h)
∂ l

af ′(k) −
∑
j∈J

Hj(k; h)
∂k

− pk = 0 and n∗ = X − pkk∗. (3)

3.1.2. Model with solar power technology
In the extended model in which a household can choose to

adopt solar power for household lighting, lighting output depends on
kerosene input k and solar power input s, so that

l(k, A) = af (k) + bsI(A = 1), (4)

where b > 0 is a strictly positive efficiency parameter and I is an
indicator function which scores one whenever the household adopts
solar power, A = 1; the lighting production function reduces to
Eq. (1) if the household continues to exclusively rely on kerosene for
home lighting. Notably, s̄ is a fixed quantity determined by the output
generated from the solar microgrid, so that households demanding
lighting output l > l(k = 0, A = 1) are going to still consume a
positive quantity of kerosene even after adopting solar power. This
is a distinctive feature of solar microgrids, which typically cannot
meet a household’s entire energy need and do not produce enough
electricity for productive loads.

The literature on solar technology adoption highlights asymmet-
ric information as a key issue (Rebane and Barham, 2011; Bollinger
and Gillingham, 2012; Lay et al., 2013; Smith and Urpelainen, 2014;
Urpelainen and Yoon, 2015). As solar power is a new technology
to villagers, we assume incomplete information about the efficiency
parameter b from a distribution function F with positive support
[b,b] and standard deviation sb such that

sb = s̄ + s(N; N). (5)

Here, s̄ denotes individual-specific, idiosyncratic uncertainty which
always persists, while s(N; N) captures the variability in F which is
decreasing as a function of the number of other adopting house-
holds N; N̄ is then a technology-specific number of adopters needed
to drive this component of household uncertainty to zero, as a result
of learning (Foster and Rosenzweig, 1995; Bandiera and Rasul, 2006;
Conley and Udry, 2010).8

To account for the possibility that households in rural villages
may decide to start their own business once solar power becomes
available, we again model potential business profits P as part of
the expected utility stream a household obtains from lighting l. As
before, where profits for existing business owners are simply mod-
eled as an additional component in a household’s benefit stream, the
difference between a household that anticipates to take up a busi-
ness and who does not would again be the size of the benefit set
I over which sub-utilities are added up. For any given set I prior
to solar adoption, a household’s set of sub-utilities could be written
as {I} ∪ {i′} with Bi′ = P(l; • ) when a household expects to start
its own business, increasing the cardinality of the new, union set
by one. Taking up a business because of better access to solar light-
ing through solar microgrids, in our model, can simply be accounted
for by extending the set of benefits from lighting. All else equal,

7 The third first-order condition from the quasi-linear Lagrangian is simply k = 1.
8 Technically, we have s → 0 if N → N. Even though we will not be able to test

this particular aspect of the model because we have too few time periods in our panel
data set, our theoretical model is more general and would allow modeling learn-
ing dynamics in household technology adoption. Since N varies with technology, the
model can produce equilibrium predictions for technology adoption for more than
two alternatives.
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the expectation of future profits from business ownership hence
provides households with one more benefit component over the
aggregated benefit stream when they calculate total expected utility
from technology adoption.

Recognizing uncertainty about the efficiency of solar lighting
through microgrids, as captured by b, a household’s expected utility
function when adopting solar power is given as

E[U] =
∫ ∑

i∈I
Bi(l; h) dF(b) −

∑
j∈J

Hj(k; h) + n. (6)

Keeping the notation from above and given a household’s mod-
ified budget constraint pkk + ps + n = X, where ps denotes the
adoption fee for solar power, which is a fixed cost and thus inde-
pendent of the amount of solar power consumed, the following
two implicit functions characterize optimal levels of kerosene and
numeraire consumption k̂ and n̂ when a household decides to adopt
solar power:9

∑
i∈I

E

[
∂Bi(l; h)

∂ l

]
af ′(k)−

∑
j∈J

∂Hj(k; h)
∂k

−pk = 0 and n̂ = X−pkk̂−ps.

(7)

3.1.3. Model with solar power technology and community trust
A distinctive feature of solar microgrids in our context is the

community aspect of technology adoption. Solar power can only
effectively be provided if none of the households—be they adopters
or non-adopters—overuses the community grid, steals electricity,
or tampers with the wiring of the system. Moreover, the poten-
tial adopters must consider the service provider’s trustworthiness
regarding service and payments. Solar microgrids are a prime
example of what is considered a collective good (Olson, 1965; Cornes
and Sandler, 1986) with network characteristics (Katz and Shapiro,
1985). Although the consumption of solar lighting does not require
active cooperation, each subscriber and non-subscriber must refrain
from behaving in a way that would prompt the service provider to
exit the market.

Given this dilemma, after adoption and upon payment of the
service fee, the benefits from solar power do not accrue with com-
plete certainty. Instead, benefit streams depend on each household’s
beliefs about the “trustworthiness” (Coleman, 1988; Hardin, 2002)
of the company providing the service and other people in the
community. This trust parameter h ∈ [0, 1] scales expected benefits
and is assumed to be exogenous and household-specific. It is best
thought of as a Bayesian prior, that is, as a household’s subjective
probability on a state of the world in which other households in the
community would engage in any activity that puts uninterrupted and
continuous provision of solar power at risk. Low levels of community
trust could thus bias against technology uptake as adoption becomes
a riskier choice due to less certain benefits.

Although this requires only a slight change in the household’s
objective function

E[U] = h

∫ ∑
i∈I

Bi(l; h) dF(b) −
∑
j∈J

Hj(k; h) + n, (8)

the modification breaks new ground in two important ways.
Theoretically, it helps generalize our setup to account for network
resources. Empirically, it allows us to model technology adoption as
a function of household-level prior beliefs about community trust.

9 As before, the third first-order condition yields k = 1 because of the quasi-
linearity in the Lagrangian.

3.1.4. Optimal technology adoption
In equilibrium, optimal technology adoption A∗ for a household is

determined by the following decision rule

A∗ =

⎧⎨
⎩

1 E

[
U(k̂, n̂; h)

]
> U(k∗, n∗)

0 otherwise,
(9)

where the new technology is adopted if and only if the expected util-
ity from the optimal consumption profile (k̂, n̂) under solar power
adoption is strictly larger than the utility from the consumption of
equilibrium levels of kerosene and the numeraire (k∗, n∗) without
adopting solar power.

So far, we have shown that households consume kerosene in
both cases up to levels at which (expected) marginal benefits net
of marginal costs equal exogenous market prices pk. A household’s
adoption decision then depends on four effects: a substitution effect,
an uncertainty effect, a consumption effect, and a trust effect.

The substitution effect captures reductions in kerosene use after a
household adopts solar power adoption. This reduction results from
the fact that the same equilibrium lighting output without solar
microgrids l∗ can now be generated with strictly less kerosene input
than before. Since kerosene use is hazardous, substitution away from
it confers utility to the household from solar power adoption. The
uncertainty effect comes from households not knowing the efficiency
parameter b for sure, which stacks the deck against adoption of solar
power due to the concavity in household utility. The consumption
effect arises from the need to possibly give up some consumption of
the numeraire n∗ if the reduction in kerosene use due to solar power
adoption does not free up enough of a household’s budget to fund
the fixed fee of the microgrid ps. Finally, the trust effect matters for
technology adoption as a household’s prior belief about community
trust affects the probability with which benefits from solar power
materialize.

3.1.5. Comparative statics
Here we derive comparative statics for four different quantities of

interest: changes in the budget constraint, in a household’s business
activity, in uncertainty about the efficiency of solar technology, and
in community trust. These are presented and discussed in turn to
formulate testable hypotheses for the empirical analysis.

3.1.5.1. Budget constraint. As we assume a household’s utility func-
tion to be quasi-linear, optimal consumption levels of kerosene k
are independent of the budget. By implication, relaxing the bud-
get constraint leaves kerosene consumption unaffected, so that a
non-adopting household continues to consume k = k∗ as long as
this consumption level can be funded (X ≥ pkk∗) and remains the
utility-maximizing choice even in the case of a corner solution, i.e.,
U(k∗, 0) > U(0, n∗).

Still, higher disposable income to fund the new technology makes
adoption of solar power more likely, at least if the increase in utility
from adoption per unit of money spent outweighs the increased util-
ity from consuming the numeraire good. As the return in per money
units spent from numeraire consumption is always one, solar power
adoption becomes more likely when the following inequality holds:

∑
i∈IhE [Bi (af (k∗) + bs̄; h)] − ∑

i∈IBi(af (k∗); h)
ps > 1 (10)

At this level of generality, assessing whether this condition is met
is impossible and depends on the specific application. However,
in our case, where we assume households to be energy poor, it
seems reasonable that even small increases in access to lighting have
(comparatively) strong effects in the utility response function; this
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is particularly so, given the concave nature of sub-utilities Bi. Sim-
ilar to earlier studies (Jacobson, 2007; Lay et al., 2013; Smith and
Urpelainen, 2014), we thus expect to find empirical support for the
following hypothesis:

Hypothesis 1 (Adoption and budget constraint). Richer house-
holds with less binding budget constraints are more likely to adopt
new technology in the form of solar microgrids, if offered.

3.1.5.2. Business activity. No matter whether a household already
engages in business activity prior to technology adoption or whether
a household envisions to start its own business after new lighting
technology becomes available, in both cases the set of household
benefits, defined as the union set B ≡ ∪iBi, for such a household is
strictly larger than for an otherwise comparable household who does
not run its own business. The demand for lighting l is thus increasing
in the cardinality of B. As adopting solar power can increase lighting
output to meet higher demand, while at the same time not driving
up hazardous damages as kerosene would, solar adoption becomes
more likely for households already running or planning to run their
own business, that is, for households with strong entrepreneurial
spirit. We will test this hypothesis against our data of solar power
adoption in rural India.

Hypothesis 2 (Adoption and business activity). Households
already running a business or entrepreneurial households aspiring to
do so are more likely to adopt new technology in the form of solar
microgrids, if offered.

3.1.5.3. Risk aversion. Lighting output l from solar power depends
on the efficiency parameter b, which is unknown to households as
b ∼ F[b,b](lb,sb). Adopting solar power is therefore a risky choice.
We further assumed that lighting benefits Bi are strictly concave and
additive in E [

∑
i∈IBi(l; h)]; households are hence risk averse in light-

ing benefits, which biases against solar power adoption. This allows
formulating the following hypothesis.

Hypothesis 3 (Adoption and risk aversion). Less risk averse house-
holds are more likely to adopt new technology in the form of solar
microgrids, if offered.

3.1.5.4. Community trust. With solar microgrids being a network
resource, the likelihood with which benefits from solar power adop-
tion materialize depends on a household’s individual expectation
about other households’ behavior. For high levels of community
trust, h takes on high values and drives up expected benefits from
technology adoption. We thus expect a positive relationship between
community trust and adoption of solar microgrids.

Hypothesis 4 (Business and community trust). Households with
more trust in their community are more likely to adopt new technol-
ogy in the form of solar microgrids, if offered.

3.1.5.5. Kerosene market prices. Kerosene market prices pk are exoge-
nously given and rural households are assumed to be price takers. As
market prices increase, the derived first-order conditions in Eqs. (3)
and (7) no longer hold. Households then adjust their consumption
behavior by reducing the amount of kerosene consumed, which
brings down the summed damages

∑
j∈J Hj(k; h), but also summed

(expected) benefits from lighting. However, because of the convex-
ity and concavity assumptions, respectively, damages decrease more
quickly than benefits, balancing the first-order conditions again.
Reductions in kerosene consumption for non-adopting households
must always be larger than for households already using solar power
as solar microgrids offer an alternative lighting source. This has to
be so as households with solar microgrids use strictly less kerosene
to begin with. To obtain output l̄, for example, non-adopting house-
holds consume k = f −1

(
l̄
a

)
, while adopting households only require

k = f −1
(

l̄−bs
a

)
, which is strictly smaller. Reducing consumption

levels from k to k, requires thus less adjustment by households
already using the new technology. If, however, upon spiking prices
in kerosene markets, non-adopting households were to reduce con-
sumption and, as a consequence, lighting output, too, this is when
adopting solar microgrids becomes more attractive. This underlies
why price increases in kerosene markets make the adoption of solar
microgrids more likely, which we also test below.

Hypothesis 5 (Adoption and kerosene market prices). Increases in
kerosene market prices make households more likely to adopt new
technology in the form of solar microgrids, if offered.

3.2. Research design

To test the model, we use original data from a field experiment
with distributed solar power in rural Uttar Pradesh, India (Aklin et
al., 2017). While the goal of the field experiment was to evaluate the
impacts of distributed solar power, here we use data on adoption
behavior in habitations that were offered access (N = 49) to house-
hold electricity through solar microgrids. The study was conducted
in three waves over the course of 15 months from February 2014
to June 2015 (see Appendix A1 for details). As in our formal model
above, the unit of analysis is a household in a survey wave. We esti-
mate both panel and cross-sectional models (by survey) to predict
adoption rates of solar power for household use. In total, our sam-
ple comprises a maximum of 765 households in the midline and 777
households in the endline survey, from 49 different habitations.10

We estimate logistic regressions and linear probability models to
explain household adoption decisions of solar technology.

By focusing on the adoption of solar power provided through MGP
microgrids in the context of a controlled randomized trial, our empir-
ical analysis benefits from several advantages. First, and most impor-
tant, we can measure the dependent variable of technology adoption
accurately, which ensures comparability of household decisions.
Second, the experimental nature of the study minimizes possible
contamination which could result, for instance, from households
being offered access to other or similar forms of solar technology
from competing providers. Third, our initial baseline survey, which
was conducted pre-treatment in February 2014, reveals that 96%
of all households in our sample use kerosene lamps for household
lighting. This is key as once MGP started offering households access
to solar microgrids, the adoption decision that households needed to
make (as in our formal model above) was truly dichotomous. Fourth,
offering energy-deprived households an alternative form of house-
hold lighting makes for a very real adoption choice; this decision
impacts everyday lives, and so rural villagers are likely to seriously
consider this offer, making revealed behavior meaningful.11 Finally,

10 In the field experiment we tried to offer solar power to 54 habitations, but in five
of them flooding prevented us from doing so. Because households in these households
could not adopt even if they wanted, these habitations are excluded from the study
sample.
11 Only 27 households out of 778 (about 3.5%) in the baseline survey report to

have a grid connection.
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the empirical analysis, to our knowledge, is the first to study technol-
ogy adoption of energy by individual households for its social benefits
rather than technology adoption of, for example, new fertilizers by
rural farmers to increase agricultural yields.

3.2.1. Model specification
In our empirical analysis, we estimate logistic panel regressions:

Logit(Yit) = a + bXi,pre + eit , (11)

where for household i and survey wave t = {midline, endline},
Yi,t = {0, 1} is a time-varying indicator variable for whether a
household had subscribed to the MGP service or not. The household-
specific vector of covariates Xi,pre is measured pre-treatment during
our baseline survey to avoid simultaneity bias; a denotes the
intercept, b captures the vector of slope coefficients, and eit is the
error term. As households live in different habitations, we cluster
standard errors at the habitation level.

To show the robustness of our main results, we estimate panel
regressions also as linear probability models (Appendix A5), sepa-
rately for midline and endline cross-sections (Appendix A6), models
with village-level fixed-effects (Appendix A7), and conduct sub-
sample analyses (Appendix A8), without substantial changes to our
results.

3.2.2. Dependent variable
The dependent variable is a binary indicator for whether house-

hold i is subscribing to the MGP service at time t. During the time
of the baseline survey, in which we collected a battery of household
data, no household had access to this service. This is important as it
safeguards our analysis against confounding, and hence allows us to
use these baseline data as pre-treatment covariates.

3.2.3. Main explanatory and control variables
We differentiate our main models below by the set of explana-

tory variables which we include. The first model only includes basic
indicators of disposable income and wealth. More specifically, we
include measures from our survey on household expenditures and
household savings, both measured in rupees per month; we logarith-
mize both variables to account for the skewed distribution income
variables typically have. We also add a dummy variable on whether
a household is indebted or not.

As a second set of variables, we include a variable for how
entrepreneurial a household is, a binary indicator for business
ownership, and a measure for revealed risk aversion. We measure
entrepreneurial spirit as an additive index of responses to the follow-
ing eleven true-false questions: I am at ease handling difficult situ-
ations; I do not mind uncertain monthly income; I do not irregular
monthly income; I believe that I can change my own future; I appre-
ciate having the final say; I do not have a problem making decisions; I
can easily deal with stress; I am willing to make sacrifices to succeed;
I like to lead others; I am not scared starting anew; I get difficult tasks
done rather now than later. We consider entrepreneurial spirit as a
latent trait of an individual, such as a household head, that is related
but not identical to risk acceptance. Drawing on Schumpeterian
insights into the role of entrepreneurs and “creative destruction” in
capitalist economies (Schumpeter, 2003 [1943]), the literature on
entrepreneurship finds this latent trait to be an important predic-
tor of engagement in business creation, and thus creating economic
growth (Doepke and Zilibotti, 2005; Galor and Michalopoulos, 2012).
In our baseline sample, households reporting an interest in opening
a business in the future (about 60% of our sample) score significantly
higher on our entrepreneurial spirit index than household heads
without such interest (6.75 to 5.66, with t = 6.086).

Business ownership is a simple dummy variable coded one when-
ever a household runs its own business. In our baseline data, less
than 10% of households were running their own business.12 These
households also score higher in terms of entrepreneurial spirit than
those who run a business only part-time, but business owners as a
whole are comparable to households without their own business.13

Important for our purposes, only two households work at night, and
both agree that better lighting would help their business, which
suggests that lacking access to lighting limits households’ economic
productivity and output.

We measure risk aversion from a choice experiment which we
conducted as part of our survey. We prompted survey responses with
the hypothetical choice between a payment of 3000 rupees for sure
and a lottery with expected values of 3250 rupees, 3500 rupees, and
4000 rupees, respectively, where we increased the expected offer for
those households which would reject the safe option. We then use
reported behavior to these choices to classify households on a 1–4
scale from risk loving to very risk-averse; higher values denote more
risk aversion. While several approaches on how to elicit risk aversion
exist (Holt and Laury, 2002), survey-based menus of hypothetical
paired choices have a long tradition, especially in the context of
development economics (Dillon and Scandizzo, 1978). Most impor-
tant for our context, almost a third of households in our sample
can be classified as risk loving, which alleviates the typical concern
of over-representing risk aversion in reported over revealed behav-
ior measures (Binswanger, 1980). Acknowledging that comparing
measures of risk aversion is beyond the scope of this paper, we pri-
marily introduce our measure of risk aversion as an explanatory
variable into our econometric model as we seek to tease out differ-
ences in adoption behavior due to household entrepreneurship and
risk aversion. As Guiso and Paiella (2008, 1109) find that individuals
“who are more likely to face income uncertainty ... exhibit a higher
degree of absolute risk aversion,” separating these two influences on
technology adoption seems well founded.

To test our expectations about community trust, we use two
trust measures from our survey. In our theoretical model, commu-
nity trust affects the likelihood with which a household expects to
obtain benefits from adopting solar microgrids. Interestingly for our
empirical application, we can distinguish between targets of trust.
For one, households may be concerned about the trustworthiness
of other households in the habitation, which makes adoption of the
new technology less attractive. On the other hand, households may
also be concerned about the trustworthiness of the service provider,
that is, the business which operates the new technology. In our case,
if households do not trust MGP, they should be less likely to adopt
MGP’s solar powered microgrids. To empirically test for these dif-
ferences, we construct two indices, both on a 1–5 scale with higher
values denoting “more trust.” The first index averages household
responses to questions related to general trust in people in the habi-
tation and trust in people from the same religion and caste as well
as from another religion and caste.14 The second index records the
mean of household responses for trust in large companies, small
firms, and local enterprises to capture household trust towards

12 Out of 65 business owners, two-thirds were active in selling goods in markets,
while ten were active in dairy and cooking, five in the repair business and another five
in handicraft and textiles. On average, business activity accounts for 46% of household
income, while 29 households report that their own business is the main source of
income.
13 The small number of business owners limits further analysis, but descriptively

the entrepreneurial spirit variable is 5.66 (part-time business owners) and 6.03 (main
income business owners) and 5.83 (business owners) and 6.31 (no business owners).
None of these differences are statistically significant in two-tailed t-tests.
14 Specifically, we asked the following five questions for trust in people: (1) Do

you trust the other people in your hamlet? (2) Do you trust people of other religion?
(3) Do you trust people of your religion? (4) Do you trust people from your own
caste? (5) Do you trust people from other castes?
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Table 5
Summary statistics for main variables. All variables are measured pre-treatment and come from the baseline survey (February 2014). Non-logged means in US$ with an exchange
rate of 0.0147 US$ per Indian rupee, as of 20 January 2016, are $63.79 (HH expenditures), $12.68 (HH nominal savings), $0.55 (PDS kerosene spending), and $1.05 (private market
kerosene spending).

Summary statistics

Mean SD Min Max #

HH expenditures (rupees/month, log) 8.24 0.54 6 10 778
HH savings (rupees/month, log) 4.47 3.37 0 9 778
HH in debt 0.49 0.50 0 1 778
Entrepreneurial spirit 6.27 2.45 0 11 778
Business owner 0.08 0.28 0 1 778
Risk aversion (experiment) 2.69 1.31 1 4 778
Trust in people (index) 3.55 0.79 1 5 778
Trust in firms (index) 2.98 1.13 1 5 778
Kerosene spending (PDS, rupees/month, log) 3.17 1.35 0 6 778
Kerosene spending (private, rupees/month, log) 3.30 1.99 0 6 778
HH electrification 0.03 0.18 0 1 778
HH size (#) 4.79 2.13 1 12 778
Age of HH head 38.70 13.27 18 82 778
School years of HH head 2.87 4.14 0 17 778
Scheduled caste 0.25 0.43 0 1 778
Backward caste 0.64 0.48 0 1 778
Lighting satisfaction 1.96 0.83 1 5 778
Solar power decreases lighting cost 0.76 0.43 0 1 778

firms.15 As we are not sure whether households think of MGP as a
large, a small, or a local firm, averaging responses produces the most
reliable measure.

Extending the set of variables further, we include variables
for previous lighting solutions at home. These entail the monthly
amounts of rupees spent (logged) for buying kerosene both from the
public distribution system (PDS), where prices are highly subsidized,
and the private (black) market (Rao, 2012). Controlling for kerosene
expenditures is critical as kerosene is typically the primary lighting
source in rural communities; in fact, 96% of households in our sam-
ple are using it for their lighting at home. Kerosene on the public,
subsidized market is cheaper, but households can only obtain fixed
amounts which are rarely sufficient to cover a household’s full light-
ing demand. A vast majority of 85% of households buy kerosene from
the PDS, spending about 37 rupees a month, but also from the pri-
vate market, where expenditures, on average, are almost twice as
high. As efficient lighting technologies, like solar microgrids, are to
reduce the need to supplement kerosene from the public distribution
system, we expect households with high kerosene bills from the
private market to be sympathetic to technology adoption.

An electrification dummy controls for whether households have
already access to some form of electricity (including lighting among
other forms of electricity access) as this clearly affects adoption
behavior of the solar microgrid. As mentioned before, only 4% of
households in the sample reported to have electricity access in the
baseline interview.

Finally, variables of household characteristics and subjective per-
ceptions are included. We control for the number of household
members to account for household size, the age of the household
head, the household head’s number of school years, and two dummy
variables for whether a household head is from a scheduled or back-
ward caste, mainly because previous research has shown that these
variables affect technology adoption (Bandiera and Rasul, 2006; Giné
and Yang, 2009; Koundouri et al., 2006). Aside from these house-
hold characteristics, perceptional measures are added to some of our
model specifications. Adesina and Zinnah (1993), for example, show
that farmers’ perceptions of technology specific attributes are crit-
ical for understanding adoption decisions of rice varieties in Sierra
Leone. This is in line with psychological research, which also attests

15 The three questions for trust in firms were as follows: (1) Do you trust large
companies? (2) Do you trust small companies? (3) Do you trust companies operating
in this area?

to the importance of attitudes towards technologies (Morris and
Venkatesh, 2000). We hence control for lighting satisfaction and per-
ceived benefits from solar power. These data come specifically from
survey questions on (i) how satisfied the household is with its cur-
rent lighting situation (5-point scale) and (ii) whether (or not) a
household agrees to the statement that solar power can decrease
monthly lighting expenditures (0–1 measure).

Summary statistics of all explanatory variables for the full sample
are in Table 5 below, while we report summary statistics sepa-
rately by installation and adoption status in Appendix A3. Table 6
shows trends in means for main, time-varying variables for the
three different surveys. When comparing pre-treatment summary
statistics from our baseline survey, we find habitations that ulti-
mately ended up subscribing to MGP’s service to spend significantly
less on kerosene from the PDS (32.68 vs 42.37 rupees, t = 4.60),
but significantly more on kerosene from private markets (77.60 vs
65.40 rupees, t = 2.66); this aligns well with the logic discussed
above. Household heads in habitations with installed MGP service
are also almost 2 years older (39.6 vs 37.7 years, t = 2.04), have
almost 1 year less education (2.42 vs 3.34 years, t = 3.13) compared
to habitations without solar microgrids, and are more likely to come
from a backward caste (0.68 vs 0.58, t = 2.86).

Table 6
Mean values of main variables by survey, separately for baseline (February 2014,
N = 778), midline (October 2014, N = 765), and endline surveys (June 2015,
N = 777).

Summary statistics by survey

Baseline Midline Endline

February
2014

October
2014

June
2015

HH expenditures (rupees/month, log) 8.23 8.06 8.04
HH savings (rupees/month, log) 4.46 1.88 1.93
HH in debt 0.49 0.46 0.54
Business owner 0.08 0.06 0.06
Trust in people (index) 3.54 3.65 3.75
Trust in firms (index) 2.97 3.41 3.38
Kerosene spending (PDS, rupees/month, log) 3.16 2.98 3.38
Kerosene spending (private, rupees/month, log) 3.29 2.13 1.57
HH electrification 0.03 0.39 0.41
Lighting satisfaction 1.96 3.30 3.40
Solar power decreases lighting cost 0.76 0.81 0.72
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Within habitations that adopted MGP service, adopting house-
holds have higher monthly household expenditures of about
450 rupees (8.31 vs 8.19 (logged) rupees, t = 2.08) and save about
120% more per month (5.11 vs 4.32 (logged) rupees, t = 2.22). They
are also more entrepreneurial, with scores of 6.60 over 5.90 on a 0–11
scale (t = 2.81), hold more positive views of solar power in terms of
the technology’s potential to reduce monthly lighting expenses (0.84
vs 0.73, t = 2.48), and more likely to come from a backward caste
(0.74 vs 0.65, t = 1.96).

4. Results

In this results section, we first discuss descriptive findings that
show how many key variables of interest change over the duration
of the study periods. We then present our econometric results for
household solar microgrid adoption.

4.1. Descriptive findings

Overall, 136 households adopted the MGP service. Of these, 132
reported being customers in our first post-treatment interviews, and
4 more had joined when we conducted our last survey. Between the
second and third wave, 47 households canceled their contract with
MGP.

Adopters and non-adopters differed in several respects. Table 7
reports summary statistics separately for adopters and non-adopters,
both pre- and post-treatment. Adopters were wealthier and had
more savings. They had a stronger entrepreneurial spirit and spent
more on kerosene on the private market. At the same time, based
on these simple differences, we also note that the two groups were
also similar in important ways: a similar share of people owned
businesses, their household head was about the same age, and they
were about equally satisfied with their lighting situation.

The before-after comparisons by group reveal two notable tem-
poral trends. First, household monthly savings decrease in both
groups over time, possibly because the fiscal year 2014–2015 was
a particularly bad one for Uttar Pradesh agriculture. Second, over-
all electrification rates increase from 3% to 31% even among non-
adopters, mostly because use of both non-MGP solar products and
batteries grows rapidly. To provide a more precise analysis of these
differences, we next discuss our econometric results.

4.2. Econometric results

The results from the panel data analysis are shown in Table 8,
with models differentiated by the set of included covariates. Models
(1)–(4) use household-level adoption data from all 49 habitations,
in which MGP service was offered. Due to low demand, microgrids
were however not installed in all habitations, so models (5)–(8) repli-
cate the analysis for habitations in which a microgrid was indeed
installed.

Estimating models with habitation fixed effects is only partially
useful in our setting, because we would lose all those habitations
where either (i) no MGP system was installed (24 habitations) or
(ii) where we did not end up having at least one adopting house-
hold in our sample of interviewed respondents.16 The latter was the
case for five out of 25 habitations and dropping these observations
would clearly bias our results. Nonetheless, to reduce unobserved
heterogeneity across habitations, in models (5)–(8) we re-estimate

16 Appendix A3 (Table A6) provides further information on installation and adoption
rates by habitation.

Table 7
Summary statistics for main variables divided by adoption status and before/after
actual adoption. Variables that are time-invariant, slowly varying, measured only
once, or where variation is not meaningful are only reported for the pre-intervention
period.

Summary statistics by group

Non-Adopters

Before intervention After intervention

Mean SD Mean SD

HH expenditures 8.22 0.56 8.05 0.55
HH savings 4.33 3.39 1.86 3.10
HH in debt 0.50 0.50 0.49 0.50
Entrepreneurial spirit 6.20 2.49 −
Business owner 0.08 0.27 0.06 0.24
Risk aversion (experiment) 2.70 1.31 −
Trust in people (index) 3.56 0.78 3.70 0.84
Trust in firms (index) 3.00 1.13 3.36 1.14
Kerosene spending (PDS) 3.20 1.33 3.26 1.31
Kerosene spending (private) 3.22 2.01 1.96 2.20
HH electrification 0.03 0.18 0.31 0.46
HH size (#) 4.80 2.11 −
Age of HH head 38.70 13.08 −
School years of HH head 2.95 4.18 −
Scheduled caste 0.26 0.44 −
Backward caste 0.61 0.49 −
Lighting satisfaction 1.96 0.85 3.26 0.92
Solar decreases lighting cost 0.74 0.44 0.76 0.43

Adopters

Before intervention After intervention

Mean SD Mean SD

HH expenditures 8.31 0.44 8.08 0.51
HH savings 5.09 3.20 2.14 3.32
HH in debt 0.47 0.50 0.55 0.50
Entrepreneurial spirit 6.62 2.20 −
Business owner 0.09 0.29 0.07 0.25
Risk aversion (experiment) 2.61 1.32 −
Trust in people (index) 3.47 0.85 3.74 0.79
Trust in firms (index) 2.87 1.14 3.56 1.05
Kerosene spending (PDS) 3.00 1.42 2.87 1.58
Kerosene spending (private) 3.68 1.82 1.35 2.01
HH electrification 0.04 0.19 0.83 0.38
HH size (#) 4.73 2.23 −
Age of HH head 38.71 14.18 −
School years of HH head 2.53 3.97 −
Scheduled caste 0.17 0.37 −
Backward caste 0.76 0.43 −
Lighting satisfaction 1.98 0.76 3.77 1.08
Solar decreases light. cost 0.85 0.36 0.84 0.37

our main models for the subsample of only those 25 habitations in
which MGP microgrids were installed.

All coefficients are given as odds-ratios and capture the effect
of a variable on the probability of technology adoption relative to
the probability of non-adoption. Accordingly, we test whether the
odds-ratio (i.e., exponentiated coefficient) is equal to 1. This trans-
lates into adoption and non-adoption being equally likely, which is
identical to an estimated coefficient of zero in standard coefficients.
The simple monotone transformation from standard coefficients into
odds-ratios makes the substantive interpretation of coefficients in
non-linear logistic regressions much easier.

Focusing on the full sample first, which includes both habitations
that adopted MGP solar microgrids and those in which there was
no installation because of lacking demand, we find strong empirical
support for our first hypothesis. Richer households are indeed more
likely to adopt solar power, and at highly statistically significant lev-
els (p < 0.05 throughout all models). Using monthly household
expenditures and savings as measures for disposable income, we find
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Table 8
Panel models (coefficients as odds-ratios) for full sample (models 1–4) and for habitations with MGP service (models 5–8).

Logistic panel regressions: Technology adoption

Full sample Subsample: MGP service installed

(1) (2) (3) (4) (5) (6) (7) (8)
Model Model Model Model Model Model Model Model

HH expenditures (rupees/month, log) 2.59*** 2.41*** 2.29*** 2.61** 5.61*** 6.33* 5.54** 4.39*
(0.77) (0.74) (0.71) (1.21) (3.65) (6.53) (4.15) (3.41)

HH savings (rupees/month, log) 1.19*** 1.19*** 1.19*** 1.22*** 1.30*** 1.35 1.31** 1.25**
(0.06) (0.06) (0.05) (0.07) (0.12) (0.25) (0.15) (0.11)

HH in debt 0.73 0.71 0.70 0.83 0.83 0.63 0.69 0.91
(0.33) (0.32) (0.33) (0.44) (0.60) (0.52) (0.53) (0.63)

Entrepreneurial spirit 1.19*** 1.23*** 1.33*** 1.58** 1.60*** 1.51***
(0.08) (0.08) (0.12) (0.36) (0.22) (0.18)

Business owner 1.13 1.09 0.82 2.08 1.84 1.57
(0.75) (0.73) (0.71) (3.08) (2.33) (1.87)

Risk aversion (experiment) 0.88 0.85 0.95 0.91 0.89 1.04
(0.12) (0.11) (0.13) (0.27) (0.23) (0.22)

Trust in people (index) 0.74 0.65* 0.67 0.64
(0.17) (0.16) (0.25) (0.22)

Trust in firms (index) 0.80 0.74 0.86 0.83
(0.17) (0.18) (0.34) (0.32)

Kerosene spending (PDS, rupees/month, log) 0.93 1.14
(0.15) (0.30)

Kerosene spending (private, rupees/month, log) 1.27 1.25
(0.21) (0.27)

HH electrification 1.28 1.86
(2.03) (1.98)

HH size (#) 0.88 0.84
(0.09) (0.13)

Age of HH head 0.99 0.97
(0.02) (0.03)

School years of HH head 0.87** 0.91
(0.05) (0.07)

Scheduled caste 1.53 1.24
(2.28) (1.87)

Backward caste 9.26** 5.42
(8.87) (6.27)

Lighting satisfaction 0.21 0.22
(0.35) (0.48)

Solar power decreases lighting cost 4.21** 4.29*
(2.68) (3.56)

Observations 1530 1530 1530 1530 784 784 784 784
Habitations 49 49 49 49 25 25 25 25

Dependent variable: MGP adoption.
Standard errors in parentheses and clustered by habitation.
All explanatory variables are measured pre-treatment.
* p < 0.10, ** p < 0.05, *** p < 0.01

that doubling these two variables increases the odds (ratio of suc-
cess to failure) of technology adoption (holding all variables at their
means) by 129–159 % for household expenditures and by 19–23 % for
increases in savings.

This finding hints at critical income and wealth effects for house-
hold adoption of new technology. While similar effects have been
found for the adoption of sunflower seeds or new irrigation sys-
tems (Bandiera and Rasul, 2006; Koundouri et al., 2006), adoption
of household lighting technology compared to these more produc-
tive uses may also be impeded by budget constraints. Somewhat
surprisingly, income and wealth effects occur even though house-
holds should be able to recoup the MGP service fee of 100 rupees by
saving a substantial share of their expenses on lighting, which are
reported to amount on average to 116 rupees per month on average.
Most likely, however, MGP services alone cannot cover a household’s
full lighting demand. Since MGP offers two lights, a large family
may need additional lighting; moreover, households may continue
to use a kerosene lantern when going outside, as the MGP lights are
not wireless. Given low correlations of expenditures, savings, and
whether a household is indebted or not, the latter does not seem to
be correlated with adoption behavior.

While we do not find evidence for a robust association between
household business and MGP service—most certainly due to little
variation in business ownership, with only 8.4% running their own
business in our pre-treatment survey—there is strong empirical sup-
port that more entrepreneurially minded households are more likely
to sign up for solar microgrids. When the entrepreneurial index goes
up by one unit, the odds of adoption increase by 19–26 %.

Our data allows us to distinguish between the effects of
entrepreneurship and risk aversion on adoption behavior. As
reported above, there is considerable evidence that business aspira-
tions matter, whereas we do not find such an effect for risk aversion.
Coefficients for risk aversion are consistently negative across mod-
els (that is, smaller than 1 in odds-ratio models), but fail to become
statistically significant. This effect cannot be attributed to too little
variation in our risk-aversion measure (Binswanger, 1980), with a
third of our respondents being classified into the most risk-loving
category. Substantively, we surmise that this result, which contrasts
with some of the earlier literature, is driven by respondents in our
sample having a good understanding of solar technology already.
After all, the benefits of the MGP service are easy to demonstrate
and entail little uncertainty, at least far less as when compared to
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high-yield fertilizers or more complex technical solutions. For
example, more than 7 out of 10 villagers in the study knew someone
using solar power and the vast majority of respondents answered
that solar power improves both the quality (98.7%) and reliabil-
ity (96.6%) of lighting. This suggests that risk aversion resulting
from uncertainty about the benefits from the technology on offer
is unlikely to be an impediment to technology adoption for well
understood and established technologies (Duflo et al., 2008).

The null results on different types of trust are also interesting. If
anything, the exponentiated coefficient is below 1: higher levels of
trust in companies and people in the habitation are associated with
lower likelihood of technology adoption. However, the confidence
intervals around the estimates are so wide that in both cases the 95%
confidence intervals cover the odds ratio of 1. Given this uncertainty,
the most natural interpretation is that variation in trust cannot
explain technology adoption decisions. Although both abuse and
other forms of non-cooperative behavior are possible in principle,
in practice households do not see these threats as serious concerns.
This is consistent with the notion that MGP has been successful in
preventing abuse in the form of power theft or use of unauthorized
devices.

Turning attention to the subsample of habitations in which MGP
ultimately ended up installing solar microgrids, we find results that
mirror the ones presented above. Although statistical significance
attenuates for some coefficients due to a 50% reduction in sam-
ple size, we qualitatively come to the same conclusions regarding
the factors that affect technology adoption. Household expenditures,
savings, and entrepreneurship are the most critical determinants.

Control variables, by and large, do not have strong effects on
the adoption of solar microgrids. While kerosene expenditures on
the private market are estimated to positively affect adoption, as
expected, standard errors are typically large, which prevents us from
rejecting the null hypothesis of no effect of prior fuel expendi-
tures and solar microgrid adoption. The wide confidence intervals
are however not too surprising as households with larger expen-
ditures have a preference for higher energy consumption, driving
down marginal utility less quickly. This unobserved heterogene-
ity adds uncertainty to our estimates. Further, even after adoption,
MGP’s solar service will not be sufficient to meet a household’s
energy demand due to the microgrids’ limited scope. Households will
therefore continue consuming kerosene, which should weaken the
association between kerosene expenditures and microgrid adoption.

Larger households and households with better educated house-
hold heads seem to be less likely to adopt solar microgrids, pointing
at possible limitations of the MGP service especially for households
with many members, most likely due to the small scale nature of the
lighting technology offered. Backward caste households seem to be
more likely to adopt when we look at the full sample, but this effect
goes away once we condition on the subsample in which microgrids
were installed. Descriptive statistics in Appendix A3 (Table A6) also
show that there is no systematic relationship between technology
adoption and habitation level caste composition. Indeed, out of the
25 habitations with MGP microgrids, 9 consist of only backward caste
households, 3 are exclusively scheduled caste households, while the
remaining 13 have a mixed caste composition.17 Positive attitudes
towards solar power make adoption more likely: whenever house-
holds are convinced that solar power can decrease lighting cost, this
increases chances for adoption.

17 Furthermore, out of 15 homogeneously backward caste habitations, a microgrid
is installed in 9 of them, while six do not adopt; similarly, for 5 scheduled caste only
habitations, 3 see a system installed, but 2 do not. Several w2 tests of installation status
and caste composition measures do not allow to reject the null hypothesis that caste
distributions are identical across installation and non-installation habitations.

5. Conclusion

We have presented a general model of household technology
adoption and tailored it to the case of improved household lighting
for unelectrified areas. To estimate the model and test hypotheses
about patterns of technology adoption, we have used data from a
field experiment of solar microgrids in rural Uttar Pradesh, India.
The results from the empirical analysis highlight the importance of
income effects (affordability of quality lighting) and entrepreneurial
spirit (willingness to experiment with new technologies), while
pre-existing lighting expenditures on the conventional lighting
alternative, kerosene fuel, appear to be less important as predictors.
Similarly, trust in other people in the community and companies
does not predict technology adoption.

These results suggest productive directions for new research on
the economics of household technology adoption. While the afford-
ability result is broadly consistent with conventional accounts, the
lack of a relationship between prior fuel expenditures is surpris-
ing and suggests that households do not view kerosene and solar
power as ready substitutes. The importance of entrepreneurial spirit,
but not risk acceptance, suggests that attitudes toward new tech-
nology cannot be reduced to risk aversion but instead constitute
an additional dimension of technology adoption. Further developing
and testing these hypotheses in other domains, such as communica-
tion technology or water-purifying equipment, would contribute to
progress toward a more complete theory.

Although the relationship between household characteristics and
technology adoption cannot be directly tested with experimental
methods, we see several opportunities for causal identification of
the effects of the relevant factors. One interesting approach would
be to provide households with a technology that reduces their
fuel expenditures but does not improve lighting quality, and then
check if they are still interested in a wholly new technology that
promises better lighting quality. A behavioral economics approach
could entail priming households to strengthen entrepreneurial
spirit and see if such an intervention would increase technology
adoption.

A useful way to interpret the results is to consider the model
as a stylized presentation of the decision-making problem and then
assess the empirical results in light of the significance of differ-
ent parameters. Our null results on risk aversion and trust, for
example, show that uncertainties surrounding the quality, durability,
and other aspects of basic household technology do not appear
important in the prediction of technology adoption. At the same
time, model parameters related to the size of income effects and,
more originally, entrepreneurial spirit are critical in this context.
Theorizing about the interactions between contextual factors, the
nature of the household technology under consideration, and the
importance of parameters for these various dimensions of the
problem could contribute toward the development of a full microe-
conomic theory of household technology adoption. As we have
seen, such a theory can draw on the adoption of productive (e.g.,
agricultural) technology, but the relevant dimensions of the house-
hold head’s problem are quite different and require a modified
approach.

Our empirical application also sheds new light on expanding the
adoption of off-grid solar power. The importance of entrepreneurial
spirit as an explanation for variation in adoption suggests that
households are interested in using improved lighting for livelihood
activities. Complementary interventions, such as access to credit for
business creation, could furnish benefits. We also note that improv-
ing the reliability of the energy service could help, as one-third of
the customers initially subscribed to the service and then dropped it,
mostly citing quality issues. Finally, we conjecture that India’s gener-
ous kerosene subsidies could artificially reduce the competitiveness
of solar power as a modern alternative.
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